FRAAQTET PRRE, Progrnammeng and Crmmpaeter Sgfreare, 3020, Pl 48, Na, a oo, 280 7040 8 Plrdades Publsifey, Lad, 2000
Brwwiaw Tear 40 The Auihoryzd, 2000, pibiished in Progrommirovanie, 2020 Vel £4, Vo, &

Approach to Blank Node Processing in Incremental Data
Visualization by the Example of Ontodia

D. 5. Razd’vakonov=-*, A, ¥V, Morozov®-*%, 13, 5. Pavlov®***_ and 13, 1. Muromisey-**%*

T Faculty of Software Brgineering and Compuser Teefologios,
Ar Perersbure Navional Research University of fnformarion Technoloeies, Mechanics, and Oprics (8 VMO Universing),
Kronverkskii pr. 49, 5t Petersburg, 197107 Russia

* Metaphucty East Furope,
Bol'shava Ramochinnaya wl, 14, 51 Petersburg, 197110 Russia

*e-mail: fadone Fmail ru
*Fe-mail: am@meraphacts. com
2ol dpEmeraphacts. com
*bFeomyadl: mouromivey @myail, Sfno,
Keceived April 3, 2020; revised June 16, 20210 accepted July 9, 2020

Abstract—The problem of laey visualization of ontological graphs has certain constraints. Visoalization of
structures that contain blank nodes is especially challenging. In this paper, we propos2 an approach to visu-
alization of these siruciures that is implemeanied n Oniodia, analvee the Bmiatons of this approach, and

consider some alternative solutions.
DIz 11134 /80361 TARR200 60067

. INTRODUCTION

Rescarchers working in the (eld of semantic tech-
nologics are very well familiar with blank nodes
(BMs). They are uscd to ropresent objects that do not
have internationalized resource identifiers (TR1s), e.g.,
to represent a class that is a union of several classes or
represent a collection. When representing unions, e.g.,
the construct owl ;unionOf, the resulting class is a
BN that refers to an BRI list, a strocture in which all
intermediate elements, incloding the root one, ars
BMs, whilc its cnumerated elements are ordinary nodes
with readable identifiers (sce Fig. 1), The same 1 troc
when represcnting the construct owl :Eestriction
(see Fig, 2): a BN has no meaning without specifying
which property is restricted, as well as without value
restriction.

The absence of [R1s for BNs is well justilicd:; how-
cver, from & technical perspective, this is a hindrance,
becanse the absence of IRIs makes it impossible to
refer to these nodes. It mrns ont that BNs cannot be
considered separately [fom the structure thatl inclodes
them; however., in some cascs, this scparation is
strictly necessary,

This necessity arises, e.g., when visualizing a graph
with the possibility of saving and retrieving its visual-
izaton toflrom a [ile or other artilact. The problem of
visualicing graphs with BNs 15 nol very complex il we
receive the entire structure in one bundle. However, in
the case of Ontodia [1], we are faced with lazy visual-
Leation whereby data are sent incrementally in batches,
in addition, it 1% nol known which data were visualized
and which were not, Tn this case, the ahsence of TRTs
tor BNs significantly complicates the process. With

Instamee- 1 L HELE] Class-1 Cliass-Z
T T T
Tape Hoad Hyad Hozal
L | | I
“Uniondlnss TInipn(- root-0 Thi = o= | Tor - root-2

Fig. 1. Represcntation of the RIDF list,

APPROACH TO BLANEK NODE PROCESSING

385

ol Class ol Kestriction seolor
T I '
rdf:|r:~'pe rdf:lype owl:onPraperty
‘RedWine —rdfssubClassOr—w R™ il hasValue —# red™“xsd;Str..

Fig. 2. Representation of owl rReslriclion,

lazy visualization, we cannot definitivelv say whether
a node sent with a new batch is the same node that has
already been displaved on a diagram, or it is some
other node that has the same set of links and the same
tvpe. This problem also arises when we ey o retrieve
a previouwsly saved visvalization, where it does nol
maller whoether laey loading is used or the visualizalion
wis built of 2 single batch.

In this paper, we demonstrale how Onlodia solves
the problem of visualizing onlological graphs with
BMs under conditions of lazy loadmg, as well as the
problem of saving and retricving this visualization
(diagram).

Wisualizalion in general and the proposed approach
in particular can be useful in 2 number of tasks associ-
ated with logical expression flows, c.g., those consid-
ered in the papers “Knowledge visualization based on
a semantic network™ [2] and “A method for accelera-
tion of logical inference in the production knowledge
model™ [3].

2. EXISTING APPROACHES

Hercinafter, we wse the data shown in Listing 1.
The data are part of the wine ontology (hitp:
S lwne w3 org/TRowl-guide /wine . rdf).
For illastrative purposes, one of the links is duplicated
and its identifier is replaced with a non-standard one:
owl:intergectiontf — =http://exam-
ple.com/unknownTypeCfProperty=. This is
done o dermnonstrate how visualization tools handle
non-standard cases,

There are several approaches o BN processing,
some approaches directly solve the problem of lazy
visualizalion ol onwlogical graphs; other approaches
also solve the problem of comparing graphs with BNs
while pursuing other goals. Onwop Protégs (4] imposes
a constraint on BW properties: cach BW must have a
literal property rdfs:label, which obviously acts
as a stable identifier. Another plugin, OntoCraph
Protégé, makes it possible to visualize BNs, yet in a
non-standard way. In OntoGraph, BNs are visualized

PROGEAMMING AND COMPUTER SOFTWARE

Wal.46 Moo g

as annotations (see Fig, 3a), which are represented as
pop-up windows, with the constrmet owl s Restric-
ticn being represented as a Superclasgses prop-
erty and owl : InterasectionOf being represented
as BEquivalent classes. Non-standard stroctures
are visualized in OnwoGraph Protéed in a dillerend
wiy. In Fig. 3b, il can be seen thal a non-standard link
to an RDF list is included in 4 separate Zinnota-
tions block; then, only the first BN of the list is dis-
plaved.

Some tools, e.g., Graffoo [3], do not support BN
visualization and discard BNs in the process of render-
ing, When visualizing ontologies that conrain BNs,
WebVOWL |6] implements an individual approach to
visualization of supported structures; however, the list
of these structures is shorl. For instance, WebVYOWL
reprosents the construcl owl @ intersectionOf asa
star topology, where the central nodc is an interscetion
of other topology classes (sce Fig. 4), while almost ignor-
ing the constructs owl : Restriction and displaying
only the links to the basic entity owl:Thing, The
non-standard cases are ignored. It should also be
noted that WebVOWL focuses more on visualization
of classes rather than on class instances.

A similar approach is implemenied in OWLGHEd
|7]. The construcl owl :intersectionOf is visu-
alized as alree. The comslrucl owl :REestrictionis
displayed as an annotatgon i the body of a tanget clement
{sce Fig. 5a). In contrast to WebVOWL, OWLGrEd can
render class instances while highlighting them in
green; however, it does not cope with non-standard
cases, The constructs of the RTIJF list tvpe are ignored
unless they are part of the construct owl : Intergec-
tionoL (see Ui, 5b).

The PHPF library EasyBdl | %] vses another approach.

In the process of visualization, EasvRdl displavs
the strueture of the ontological graph as dccurately gs
possible; however, it does not support individual visual-
ization of common structures (see Fig. Ga). Figure Ha
shows only a part of the result because the entire result
is too cumbersome and FasyRdf does not support
visualization editing. The entire graph is immediately

2020

386

RAZD'YAKONOV et al,

Oprefix owl: <http://www.w3.org/2002/07/owl#>

Oprefix rdfs: <http://www.w3.org/2000/01/rdf-schema
&>

Oprefix wines: <http://www.w3.org/TR/2003/PR-owl-
guide -20031209/wine#t>

s <http://www.w3,org/TR/2003/PR-owl -guide -20031208/

1%
20

21
22

21

24

25
26

28

wine> a owl:Ontology
rdfs:label "Wine (Ontology"

wines:Anjou a owl:Class ;

rdfs:esubClass0f [a owl:Restriction ; owl:
onProperty wines:hasColor ; owl:hasValue wines:
Rose],

[a owl:Restriction ; owl:onProperty wines:hasBody

; owl:hasValue wines:Light],

[a owl:Restriction ; owl:onProperty wines:
hasFlavor ; owl:hasValue wines:Delicate],

[a owl:Restriction ; owl:onProperty wines:
hasSugar ; owl:hasValue wines:0ffDry] ;

owl:intersectionDf (wines:Loire _:hlank6)

wines:Loire a owl:Class
-:blankf a owl:Restriction ; owl:onProperty wines:
locatedIn ; owl:hasValue wines:AnjouRegion

wines:Loire a owl:Class ; owl:intersectionDf (wines
:Wine _:blank8)

wines:Wine a owl:Class

wines:LoireRegion a wines:Region ; wines:locatedln
wines:FrenchRegion

wines:AnjouRegion a wines:Region ; wines:locatedIn
wines:LoireRegion

-:blankf a owl:Restriction ; owl:onProperty wines:
locatedIn ; owl:hasValue wines:AnjouRegion

-:blank9 a owl:Restriction ; owl:onProperty wines:
locatedIn ; owl:hasValue wines:LoireRegion

wines :Whiteloire a owl:Class ; owl:intersectionOf (
wines:Loire wines: WhiteWine) ;
<http://|xnlpln.con‘nnknonnTypeﬂfPtoparty> (
wines:Loire wines:WhiteWine)
wines :WhiteWine a owl:Class

Listing 1. Representation of owl:IntersectionOf und owl: Restriction in the Turtle format.

PROGRAMMING AND COMPUTER SOFTWARE Vol 46 No. 6

2020

APPROACH TO BLANE NODE PROCESSING 387

O WhiteWine

Wy ——

Yoam e e,

PSR N —

) WhiteLoire

g T P g B R

— —

B el T s il i WL

Eepas Tl e T e mer owhon e oaw

R i N E T

s T g e

S L i ®”

el e

~ @ AnjouRegion

L # LoireRegion J

([Ayowl:lnterscctiondf and owl tEcatriction
£ WhiteWine e g = | &) WhiteLoire
L _ J o e, b = T L D O
st T P sty =l 4 TH RN s - fl
— " * — 1
@ Wine) Loire | © Anjou
L J

[t The nonstandard case, the RDF Tist construct RIDF list

Fig. 3. Representation of constriacts in OnteCrraph Profdzs,

placed in the browser’'s memory, which makes il pos-
sitle to refor to BN and visualize target structures. An
advantage of this approach is that non-standard cases
are displayed exactly as they were defined (see Fig.
6h). Considering the examples of OWLGrEd and
WebVOWT., it should he noted that the individual
approach has its advantages in terms of visualization;
however, by combining it with the global approach (as
in EasvRdi), we obtain etficient visualization of com-
mon structures weether with universal visualization.

This combined approach was implemented in Top-
Braid Composer |9] (see Digs, 7a and Th). 1t can be seen
that TopBraid vses the individual approach to visualize
owl:IntersectionCf and owl :Restriction
(see Fig. 7a) while displayving the resinclions and
interscetions in the body of the clements. TopBraid
uscs the same approach to visnalization of RDF lists,
wherchy list items are sequentially displayed in the
body of the list head. Tn addition, this tool can display
the entire structure while visualizing BNs as a set of
RIDF lists linked by rdfirest (see Fig, 7h). In this case,

MROGRAMBMING AND COMI'UTER SOFTWARE

Vol 46 MNoog

the whole data are loaded into the application’s mem-
ory and are indexed depending on a problem o be
solved, which allows the craph 1o be visualized in por-
tions, The entire model is stored in the memory ofthe
uscr's machine, which 1z why visualization is imited
by ils resources, Large knowledge bases like, lor exam-
ple, Wikidata and DBpedia, cannot be visunalized in
such a way.

Similarly to TopBraid, Ontodia trics to combine
the two approaches with the individual approach in it
currenl implementation being relatively limited, sup-
porting only RDF list processing, and the other con-
structs being visualized using the glohal approach (see
Fig. 8a). Il can be scen [tom the Bgune that, for all ¢le-
ments of the BRI list, additional links to the list head
are created with the list index property on each link.
The same is done for the list tail, which, in turn, is a
separate list. This approach cnables cfficient visualiza-
tion of non-siandard cases (see Fig, b). Il is import-
ant to stress that this tool implements lazy loading

2020

388 RAZIVYAKONOV et al,

hazSuzar

hasColor

*
\ -
/‘\ g ¥ Locatedln

N

hasTlavor

S

. "
#
f l

Fip. 4. Conatructs owl :Reabriaticon and owl - Interasationdf in WehWInw] ..

(only the visualized parl of an ontological graph is
loaded), which enables big dala processing.

Taking into account the ahove discussion, Tahle 1
summarizes the approaches uscd by these tools to
visualize siruciures with BMs,

3. DESCRIPTION OF THE PROPOSET
SOLUTION

3.1, Dara Circilation in Oriodia

Lazy loading of graph data in Ontodia is carmed out
using the DataProvider object, which implements
the idea of the dara access obfect pattern [10]. Data
Provider is responsible for fetching the scheme and
data from the hasic storage. as well as for translating
the loaded data into the Ontodia’s internal model.
In addition, at the data translation stage, the data
struciure can be translormed depending on the needs
ol a particular application. This includes, lor example,
grouping individual nodes inlo takles in the user inler-
face, grouping nodes into supermodes, and collapsing
paths between them. Morcover, DataProvider
supports lazy and incremental loading on request.

Possible data queries to DataProvider are listed
in Table 2. Most of the gueries are vsed in Cotodia-
specilic cases and serve o oplimize data circulaton in
this visualization lool for ellicient display of ils inler-
face clemenis,

Hereinafter, bv additional information, we mean
the information that does not affect the topological

IEOGRAMMING AND COMPUTER 50FTWARE

siruciure of an onlological graph (il includes names of
clements, lvpes ol clements and links, and literal prop-
criies of clements).

3.2, General Description of the Soluifon

BM™ wvisualization in Ontodia consists in propro-
cessing gqueries and assigning context-dependent
identifiers to BNs. The preprocessing stage includes
several steps: collecting the context, generating con-
text-dependent identifiers, and saving the preprocess-
ing results for subsequent ontput, The identifiers must
be composed in such a way as to enable restoration of
the context directly fvom each identtier generated, as
will as ensure unambigoous comparison of the nodes.

The context is delined as [ollows: #e context for o
target BN iv a subgraph of the main graph that includes
the target BN and iransitively all BNy between non-
blank nodes { NBNs) that survound this subgraph and are
contained in if (see Fig. 9). Thus, the context for a target
BN is a graph that contains the target BN, all of its
neighhars, and neighbars of their neighbors, up to the
first NBIN.

Below, we describe our method in more detail by
answering the [ollowing guesiions:

L. When and whers is dala preprocessing cartied oot?
2. How is the context collected?

3. How is the context-dependent identifier created?
4, Where and when are the resalts outpit?

Vol 46 No, 6 2020

APPROACH TO BLANK NODE PROCESSING 389

e At
=
- e e e e i
R o m—er e I ——
el ww
La=ra mmieg wime (v
Taag i =5
. P T I —
. g carg
. L =5
{al owl rTnteraaectionCTand ow | s Restriction
——
Hages -
£l we—
W e
Trarg
- e
¥ i ¥
s - e
_— ey S s iy

(k) The nonstandard case, the BT st constroct BT sy

Fig. 5. Bepresentation of constructs in OWLGIE:D,

3.3 Where is Data Preprocessing Carried Oui?

Diata exchange between DataProvider and the
diagram is limited to the gueries that the diagram
sends to DataProvider to fetch links and elements
{where elements are classes and their instances), as
well as additional information about elements and
links. Additional information queries are as follows:

= query for all possible types of links in the graph,
regardless of particular nodes;

* guery [or properlies ol classes and elements, also
known as DataProperty:

= query for properties of links.

To solve the problem formulated above, we focus
on the guerics associated with nodes, because the
additional information does not affect the structure of
the ontological graph and the links in the case of BNs
are encoded (together with BN contexts) in their TRIs,
From the set of queries used by Ontodia (see Section
3.1}, we single out those that operate exclusively with
eraph vertices:

= classlree: query tor a tree of classes/types;

+ filter: query for a list of nodes with scarch param-
cter specification.

The other queries either return information about
links or operale wilth addilional information. When

developing our approach, woe decided that the trec ol

classes must nol include BMs because BNs usually do
not have readable identificrs and meaning outside the
structure that contains them. Hence, the only point at
which data preprocessing can be performed isthe filter
guery. This gquery is used in Ontodia wherever it is
required to obtain a list of elements (only filtering

PROGRAMMING AND COMPUTER SOFTWARE

Wal. 46 Mo, b

parameters are varied). Data preprocessing is carried
out immediately npon receiving the query result, The
result is an arrav of triplets |subject, predicate, object].
Belore reluming the resull, the triplets thal contain
BMNs in an object or subject position ane selecled o be
processed individually (see Scetion 3.4).

Jo4. Context Retrieval

The context is retrieved by recursively forming a
SPARQL query and then executing it, Suppose that
the function filter DataPFrovider returns a
BN, The result is fed o the preprocessing pipeline.
Here, it should be clarified that the £11 ter function,
in mosl cases, carries oul search depending on a targel
clement, i.e., il searches [or the neighbors of the langel
clement or Oliers the st of possible links to 1. The
only exception is kevword scarch, which can be carricd
out without specifying a target clement. BNs cannot
be found by keyword search. That iswhy, together with
the BN, the pipeline receives the TRI of the element
for which the search was carried out and the type of the
link between the BN and the tarzet element, Based on
these data, the initial SPARQL query is created. Then,
this queary is execotad, and iis result is checked for the
presence of BN, 1 no new BNs are [ound, then the
context is considercd complele; otherwise, the resull is
used o extend the initial guery. In the latter case, the
cxtended SPARQL gquery is exceuted and the first step
is repeated. The cycle continues until a result without
BM=is ohtained oruntil the context includes the entire
graph, The result of the last query represents the
desired context.

2020

390 BAZIVYAKONOV cf al,

{a)ocwl:Basicl

oLlan

i L PR b A | S e T T e

(b} The nonstandard case. the RDF list construct RDF listand owl i Inlessecllonidl

Fig. 6. Kepresentation of constructs in EasyEdf.

3.5, Contexi-Dependent Identifiers

Upon retricving the context, context-dependent
identifiers arc generated. The idea is to create an iden-
tifier from which the context can later be restored. For
this purpose, Ontodia converts the context into a hash
and uses it as an identifier. Tn this case, the hash func-
tion implements the following steps.

[. The context graph is converled o the canonical
form {sce Listing 2). A method for converting an RDF
graph to the canonical form was described in the paper
“Canonical forms for isomorphic and equivalent RT)F

Table 1. Ontology visnalization tools

eraphs: Algorithims for leaning and labeling blank
nodes™ [11].

2. The TR clements arc cncoded by the JavaScript
lnection encodeURIComponsnt in such a way that
the hash can be used as part of the TRLL

3. Avocabulary of terms is extracted from the graph
and a special array is formed to describe the types of its
terms (M is Mamed™ode, B is BlankNode, L is Literal
with langnage, 1) is Literal with datatvpe. V is Vari-
able, and G is DefaultGraph).

Towol Individual visualization| Global visvalization Incrementally Loading
OntoGraph Protege i Mo Yes Full
Ciratfon ™o Mo (=1 Full
WehW W, b= T Full
OWLGrEd Yo No Full
EasyRdf Mo ¥rs Mo Full
TopBraid Compaser b= Yes Yes Full
Omiodia Yes Yes Yes Lary

MROGEAMBMING AND COMPUTER S0FTWARE

Vol 46 Moo 2020

APPROACH TO BLANK NODE PROCESSING

391

-

[[6 nbiocsedin cohe nsdaAmodhegen |

(a) cwl:IntersecticnCfand owl:Restriction

-t

.c.r.'\h\‘k p—
|l|~m-nnw~mn |
- -

-
\.\. \\

[:L Bsiss = N) -

it SR—

(b) The nonstandard case. the RDF list construct RDF listand owl : Intesrseciiondf

Fig. 7. Representaton of construets in TopBruid Composer.

4, The vocabulary and graph represented as a set of
quads are compressed and encoded using a prefix tree
|12] (see Listing 3).

5. The resulting elements are combined into an
array.

6. In the resulting line, the following substitutions

are performed: [=2 (.] =)., —=:," ="

7. To obtain the final 1R1 (see Listing 4), an indi-
vidual index and prelix are added o the resulting hash.
Nodes of different Lypes use different prelixes:

(a) “ontodia:blank:” for an individual BN;

(b) “ontodia:list:List” foran RDF list.

The last step is required to uniquely determine,
based on the TRT of an element, whether the TRT is an
encoded context or not, as well as to provide subse-
quent individual visualization of the lists.

To restore the context from the encoded IR, it is
required to perform these steps in reverse order.

3.6. Quiput of the Preprocessing Results

Once the identifiers are formed, the modified con-
text is put in the local storage, which, like the basic

PROGRAMMING AND COMPUTER SOFTWARE Vol.46 No.6 2020

392 RAZD'YAKONOV et al,

L _— Hove
| Dlerk oB400sb 4 Y .i
hans Comer
e ase Y kA m
e
I Slark 37050 4 Y i
e — nask lavor
l
- —
- o ™ ¥ '_m"
. _‘_4 Dharm JOABCHID 4 1 T
. o8 Laghe
l e - - — "1 12577)
I —anPragany nesSuger
- — ew Slank STANGCAT 4 1
. e
* OfDry
-
ek 412577 R 2 e e s AISTTcA Y
N - —
. .
| | B

(a) owl:IntersectionOfandowl :Restriction

| list 3308910e 51 - '| ist 3a08910e 52

R

I Whitel ore I Lowe l WhiaeWine | rd
. ~
\\\ | '; //'
e el - § o - = ™
\‘\. I //
M90S T ™ 'I st C197 000 5:2

{b) The nonstandard case, the RDF list construct RDF list and owl : IntersectionOf

Fig. 8, Representation of constructs in Ontodia,

one, implements the DataProvider interface.
First, the output of the results obviously oceurs in the
filtexr function immediately afler preprocessing;
however, it is not the only place. For instance, a call of
the £ilter function returns a set of BNs that we add
to the graph, while the information about the links

included in the context remains unuscd. At the next
step of the graph rendering process, when the query for
links between the clements is exceuted, this informa-
tion becomes usclul. In this case, the information
about the links is retrieved from the local storage
rather than the basic one. Access to the local storage is

PROGRAMMING AND COMPUTER SOFTWARE Vol. 46 No.6 2020

APPROACH TO BLANK NODE PROCESSING

Table 2. Possible data queries to DataProvider

clagsTree

linkTypes

claasInfo

linkTypesInfo

elementinto

linksInfo

linkTypesOf

filter

Query for a tree of classes/types

Query for possible types of links
ina graph

Query for additional informa-
tion about a class (if available)

Query for information about a
link

Query lor informution about an
element

Query for links between ele-
ments

Query for a list of tvpes of
incoming/oulgoing links

Quocry for a list of clcments with
search parameter specification

NBN 6

Context

BN 5

o

NDBN 4

. BN 4

NBN 5

393

more efficient and the data in it are already canonical-
ized. Below is the complete list of queries that use the
preprocessed data:

« elementInfo
« linksInfo

* linkTypesOf
* filter

When loading a saved diagram, the reverse proce-
dure is carried out. Once we encounter an element
with a special prefix “ontodia:bklank:™ or
“ontodia:list:List,” we restore the context
from the IRI, put the result in the local storage, and
then return the result as described ahove.

4. CONCLUSIONS

The proposed method solves the problems ol visu-
alization and restoration of saved graphs, When saving
a graph, the identificers offits nodes arc also saved; with
its problem-specific part (context with BNs) being
encoded in identifiers, it can also be casily restored
when loading the saved graph. The method has been

NBN7?

o

NBN 1

BN 2
Target BN
i NBN 2
[BN3
4
NBN 3 NB?
A
NBN 9

Fig. 9. Representation of the BN conrtext,

PROGRAMMING AND COMPUTER SOFTWARE Vol 46 No.6 2020

394 RAZDVYAKONOV et al.

2 "quade": [{
3 "subject": {"wvalue": "h3"},
4 "predicate": {"value”: "http://wuw.uw3.

org/1598/02/22-rdf -ayntax-nasfirat"},

5 "object": {"wvalue": "http://wuww.wi.org/
TR/2003/PR-owl-guide-20031209/wine#®
Loire"},

5 "graph": {"value": ""}

. } .

8 .

4 {

1 "subject": {"value": "b4"},

11 "predicate": {"wvalue": "http://wuww.uw3.

org/1599/02/22-rdf -eyntax-neftype”},

12 "object": {"value": “"http://www.wi.org/2
002/07/oml8Clase"},

13 "graph": {"value": ""}

14 P, 1

15 "gubject": {"value": "b4"},

13 "predicate": {"wvalue": "http://www.uw3.
org/2002/07/owl#intersectionOf "},

17 "object": {"wvalue": "b3i"},

1% "grapgh": {"wvalue": ""}

1% b,

20

2 |, "pointer": "value": "bh4"

22 F

Listing X, Part of the canomicalized contest geaph with a poednter 1o the target element,

described in general and is suitable for lazy BN visual-
ization not only in Ontodia but also in other ontology
visnalization toals. The next step in the further devel-
opment of the proposed method is to formalize the
processing of special structures that vse BNs as struc-
tural compaonents;

= list (RTOF list);

* axiom (owl : Axciom);

« reslriclion {owl :Eestriction);

« mutual distinetion (owl :A11Differant);
= union {owl sunioncf);

inlerscelion (owl : intersection0f);

* complement (owl : complementOf);

« enumeration (owl : cneOf) [13].

MROGRAMMING AND COMPUTER SOFTWARE

For instance, an RDF list can be preprocessed and
visualized on a diagram as a table node while preserv-
ing 1he orginal seqguence order ol its clements.

In addition, data vispalization often borders on
visual data editing. In this direction, there are also a
number of challenges. For instance, the proposed
algorithm regards an ontology as something complete
and unmaodifiable, Tf an ontological graph is modified
inils BN context arca, then all node identificrs lose
their meaning and the context necds w be recolleeted.
In this case, 1t is not always casy to say whether the
ontology was modified in the BN context area or not;
o determine this, it is required (o compare the old
context graph with the new one, which is often a non-
trivial task. In this regard, it seems interesting to adapt

Vol 46 Moo 6 2020

APPROACH TO BLANK NODE PROCESSING 395

2 [0, "httph3AX2F L 2Fuww . w3 . orgX2F" , [0, " 10908 2F02%2F
22-rdf -syntax-nsX23", [0, "firat™, 1, "nil", 1 "
rest",! "type", 1] ,"2002%2F07%2Fowl }23", [0, "

Class",1,"Restriction”, 1, "equivalentClass", !

-l

“hasValue",!,"intersection0f" ! "onProperty",

-

11 ,"TRA2F2003%2FPR-owul -guide -20031209%2Fwine}

23",[0,"Anjou",[1,"Region",1] ,"Loire",!,"

locatedIn”, 11]],

e

["'"“.O.“l".!"‘.".Q.".“.H.”I“'t;."l"..‘)"'""'ﬁ.".""/'

,".".8,”"',9,“.“,10."“,11,"'".12."“".13]

])

-

wn

PR S B 8 -

{-1,0,-2,-1,2,1,-3,0,12,-3,

Ji~2.~-8.8.8.~4,8,-8.-2.83.
' ‘-|9|13.10|6.";]]

Listing 3. Compact representation of the context graph in the JSON format, restored from the 1R1 element.

1 bntodia:blank:uparq12:4:(((O:’httplSA!RF!?Fuuu.uS.
orgXk2F': (0:'1999X2F02X2F22 -rdf -syntax-ns23"': (0:°

firpe t:1:"*n¥X*:1:

'rest’:1:%type’:1):'2002X2F07%2

FowlX23':(0:'Class*:1:'Restriction’:1:°

equivalentClass’':!:'hasValue':!1:'intersection0f ’:
|:'onProperty’:1): "TRX2F2003%2FPR-owl -guide -20031
2094 2Fwinef23’: (0: "Anjou’: (1:'Region’:1):'Loire’:

1:'JocatedIn®:1)0):(*"N*:0:"N":1:"N":2:
e Rt Bl R BEG RER SRS B0 R R ¥

] RS B BB
g 2885 Bl RAH 9 BRI RS-

12:'H*:139):(-1:0:-2:-1:2:1:-3:0:12:-3:2:-1:-4:3:
4:-4:8:-3:-2:3:5:-2:7:11:-2:8:13:10:6:-4))

Listing 4. Example of a generated IR,

the proposed method to the problem of editing onto-
logical graphs with BNs.

1.

REFERENCES

Mouromtsev. D.. Paviov. D.. Emelyanov, Y., Morozov, A.,
Razdyakonov, D)., and Galkin, M., The simple web-
based tool tor visualization and sharing ot semantic data
and ontologics, Proc., Inr. Semantic Web Conf, 2013,

. Bessmertny, 1LA.. Knowledge visualization based on

semantic networks, Program, Comput, Software, 2010,
vol. 36, no. 4. pp. 197-204.

. Katerinenko, R.S. and Bessmertnyi, LA., A method for

acccleration of logical infcrence in the production

knowledge model, Program. Compui. Software, 2011,
vol. 37, no, 4, pp. 197-199.

. Gennari, J.H., Muscn, M.A., Fergerson, R'W., Gros-

so, W.E., Crubzy, M.. Eriksson. H., Noy, N.FE., and
Tu, S.\W,, The evolution of Protégé: An ecnvironment for
knowledge-based systems development, /ni. J. Hum.—
Comput. Stud., 2003, vol. 58, no. 1, pp. 89—123,

. Falco. R., Gangemi, A., Pcroni, S.. Shotton. D., and

Yitali, ., Modelling OW1. ontologies with GralToo,
The Semantic Web: ESWC 2014 Sarellite Events, Presut-
u, V.. Blomqvist, E., Troncy, R.. Sack, H., Papadakis, I.,
and Tordai, A., Eds., Springer, 2014, pp. 320-325,

. Lohmann, S., Link, V., Marbach, E., and Negru, S.,

WebVOWL: Web-based visualization of ontologies,
pp. 154—158.

PROGRAMMING AND COMPUTER SOFTWARE Vol.46 No.6 2020

396

-
de

RAZDY'YAKONOW et al,

Corany, K., Ovinmikova, J,, Liepin, B, and Grasmanis, M.,
Extensible visualizations of ontologes in OWTLGT,
The Semomiic Web: ESTWAT 2042 Sovelite Bvens, Hitzler, P,
Kirmane, 5., Hartig, 0., de Boer, ¥, Vidal, M.-E.,
Maleshkova, M., Schlobach, 5., Hammar, K., Lasier-
ta, M., Saditmuller, 5., Hose, K., and Verbomh, R.,
Fols., Springer, pp. 91— 196,

Humirey, N,, FasvRdi A PHP library designed 1o
make it casy to consume and produce RDFE
hitp:/ fereew, easyndlore.

. lopBraid Composer FAL). hitps:/Ssww topquadrant.

com,/ knowledge-assets g the.

IMEOGRAMMING AND COMPUTER SOFTWARE

1y, MWock, ., Darg Acoess Patterns: Database Interactions in

11.

12,

|3.

Mfeci-riented Applicetions, Boston: Addison-Wesley,
2004,

Hogan. A.. Canonical forms for isomorphic and cquiv-
alent RDT zraphs: Algorithms for leaning and labelling
blank nodes, ACH Trons, Web, 2017,

Gudkova, T.5,, Prefix compression of indexes, s
Prabl., Mefodol., Tekhnol, 2009, pp. 1310-1314,
Zaikin, LA., Algorithm for comparison of ontology
variants, Elekmon, Sredsnm Sise Upe, 2010, no, 1,
pir 132—=135,

Translated by Yu. Kormienko

Vol 46 No.oo 2020

